CÁLCIO LIQUIFORM VET

Instruções de Uso

Ref.: 1084

Finalidade . Sistema para a determinação do cálcio por reação de ponto final em amostras de soro.

Uso profissional.

[Somente para uso diagnóstico in vitro.]

Princípio. O cálcio reage com a púrpura de ftaleína em meio alcalino formando um complexo de cor violeta que é medido em 570 nm.

Características do sistema . As medições fotométricas do cálcio em soro através de métodos diretos estão baseadas na formação de complexos com moléculas orgânicas. Dentre os compostos que reagem com o cálcio, a cresolftaleína complexona é um dos mais frequentemente utilizados na rotina dos laboratórios clínicos.

O sistema da Labtest utiliza soluções líquido estáveis que permitem a produção de reagente único, estável 8 horas entre 15-25 °C e possibilita utilizar uma reação direta, rápida e que não sofre interferência de valores da bilirrubina até 38 mg/dL, hemoglobina até 180 mg/dL e triglicérides até 900 mg/dL. Assim, como valores de bilirrubina superiores a 38 mg/dL não são frequentes e a presença da hemoglobina é facilmente prevenida por uma adequada colheita da amostra, a utilização do branco da amostra será aplicada em um número reduzido de amostras.

O método não sofre interferências das proteínas plasmáticas e o efeito do magnésio é eliminado pela adição de 8-hidroxiquinoleína, tornando o método um dos mais específicos para a determinação do cálcio.

O sistema é facilmente aplicável em analisadores automáticos e semiautomáticos capazes de realizar uma medição de ponto final entre 550 e 590 nm.

Metodologia. CPC

Reagentes

1. RI - Reagente 1 - Armazenar entre 2 - 8 °C.

Contém tampão ≤945 mmol/L, pH 12. Reagente corrosivo.

2. RIZ - Reagente 2 - Armazenar entre 2 - 8 °C.

Contém o-cresolftaleína complexona $\leq 320 \,\mu$ mol/L, 8-hidroxiquinoleína $\leq 13 \,\text{mmol/L}$.

3. CAL - Padrão - Cálcio 10 mg/dL - Armazenar entre 2 - 30 °C.

Contém formol ≤0,1 %. Após o manuseio armazenar bem vedado para evitar evaporação.

Os reagentes não abertos, quando armazenados nas condições indicadas, são estáveis até a data de expiração impressa no rótulo. Durante o manuseio, os reagentes estão sujeitos a contaminações de natureza química e microbiana que podem provocar redução da estabilidade.

Precauções e cuidados especiais

Não utilizar o Reagente de Trabalho quando sua absorbância, medida contra a água em 570 nm for $\geq 0,750$ ou quando mostrar-se turvo ou com sinais de contaminação.

Os cuidados habituais de segurança devem ser aplicados na manipulação do reagente.

Material necessário e não fornecido

- Fotômetro capaz de medir com exatidão a absorbância entre 550 e 590 nm.
- 2. Pipetas para medir amostras e reagentes.

Amostra

Soro.

Deve ser criado um Procedimento Operacional Padrão (POP) que estabeleça procedimentos adequados para coleta, preparação e armazenamento da amostra. Enfatizamos que os erros devidos à amostra podem ser muito maiores que os erros ocorridos durante o procedimento analítico.

Devido ao aumento da permeabilidade das hemácias ao cálcio, separar o soro até uma hora após a coleta. O analito é estável até 2 semanas entre 2 - 8 °C e 4 semanas a 10 °C negativos.

Todas as amostras de sangue devem ser consideradas como potencialmente infectantes e manuseadas conforme as normas estabelecidas para biossegurança.

Para descartar os reagentes e o material biológico sugerimos aplicar as normas locais, estaduais ou federais de protecão ambiental.

Interferências

Valores de bilirrubina até 38 mg/dL, hemoglobina até 180 mg/dL e triglicérides até 900 mg/dL não produzem interferências significativas. Valores de triglicérides acima de 900 mg/dL produzem resultados falsamente elevados por interferência fotométrica.

Para avaliar a concentração aproximada da hemoglobina em uma amostra hemolisada pode-se proceder do seguinte modo: diluir 0,05 mL da amostra em 2,0 mL de NaCl 150 mmol/L (0,85%) e medir a absorbância em 405 ou 415 nm acertando o zero com água deionizada ou destilada.

Hemoglobina(mg/dL) \cong Absorbância₄₀₅ x 601 Hemoglobina(mg/dL) \cong Absorbância₄₁₅ x 467

Minimização da ação de interferentes . Para amostras com valores de bilirrubina acima de 38 mg/dL, hemoglobina acima de 180 mg/dL e triglicérides acima de 900 mg/dL, utilizar o seguinte procedimento: em duas cubetas marcadas "Branco" e "Teste" pipetar 1,0 mL do Reagente de Trabalho e adicionar 0,02 mL da amostra ao tubo teste, misturar e ler em 570 nm acertando o zero com o branco. Adicionar 0,02 mL de Hemstab - Labtest (Ref. 30) aos tubos "Branco" e "Teste". Misturar e ler em 570 nm acertando o zero com o branco. Usar a diferença entre as duas leituras do teste para calcular o resultado.

Preparo do reagente de trabalho . Misturar 3 volumes do Reagente 1 com 1 (um) volume do Reagente 2 de acordo com o número de testes. Estável 8 horas entre 15 - 25 °C. O reagente de trabalho apresenta coloração violeta com absorbância em torno de 0,500. Este fato não compromete o desempenho do reagente.

O CO₂ atmosférico altera significativamente a estabilidade do Reagente 1 e do reagente de trabalho, quando os reagentes são mantidos em recipientes abertos. A modificação da estabilidade é influenciada pelo tempo de exposição e condições ambientais. Sugerimos manter na bandeja do analisador somente o volume suficiente para a realização de uma corrida analítica ou usar as informações do controle da qualidade como indicador da necessidade de realizar nova calibração.

Procedimento

Ver observações 1, 2 e 3.

Este procedimento elimina a interferência causada por traços de cálcio presentes na vidraria.

Tomar 2 cubetas do fotômetro, rotular "Teste" e "Padrão" e proceder como

u doguii.	Teste	Padrão
Reagente de Trabalho	1,0 mL	1,0 mL

Colocar o fotômetro em 570 nm ou filtro verde laranja (550 a 590 nm).

Tomar a cubeta "Teste" e acertar o zero do instrumento. Em seguida, sém movimentar os controles do instrumento, adicionar 0,02 mL da amostra nesta cubeta. Misturar bem e determinar a absorbância (A_{Testo}).

Tomar a cubeta "Padrão" e acertar o zero do instrumento. Em seguida, sem movimentar os controles do instrumento, adicionar 0,02 mL de padrão nesta cubeta. Misturar bem e determinar a absorbância $(A_{nadrão})$.

O procedimento sugerido para a medição é adequado para fotômetros cujo volume mínimo de solução para leitura é igual ou menor que 1,0 mL. Deve ser feita uma verificação da necessidade de ajuste do volume para o fotômetro utilizado. Os volumes de amostra e reagente podem ser modificados proporcionalmente sem prejuízo para o desempenho do teste e o procedimento de cálculo se mantém inalterado.

Em caso de redução dos volumes é fundamental que se observe o volume mínimo necessário para a leitura fotométrica. Volumes da amostra menores que 0,01 mL são críticos em aplicações manuais e devem ser usados com cautela porque aumentam a imprecisão da medição.

Cálculos . Ver linearidade

Exemplo

Absorbância do teste: 1,270 Absorbância do padrão: 1,346

Cálcio (mg/dL) =
$$\frac{1,270}{1,346}$$
 x 10 = 9,4

Devido a grande reprodutibilidade que pode ser obtida com a metodologia, pode-se utilizar o método do fator.

Cálcio (mg/dL) = Absorbância do teste x Fator

Exemplo

Fator de calibração =
$$\frac{10}{1.346}$$
 = 7,43

Cálcio (mg/dL) = $1,270 \times 7,43 = 9,4$

Calibração . O padrão é rastreável ao Standard Reference Material (SRM) 915 do National Institute of Standards and Technology (NIST).

Calibrações manuais

Obter o fator de calibração ao usar novo lote de reagentes; Obter o fator quando o controle interno da qualidade indicar.

Sistemas automáticos

Branco de reagentes: água ou solução de NaCl 150 mmol/L (0,85%); Padrões: usar calibradores protéicos. A concentração de cálcio no Calibra VET Ref. 1015 - Labtest é rastreável ao SRM 915b do NIST:

Intervalo de calibrações

Deve-se recalibrar o sistema nas seguintes situações: Calibração de 2 pontos ao mudar de lote;

Calibração de 2 pontos quando o controle interno da qualidade indicar.

Linearidade

O resultado da medição é linear até 16 mg/dL. Quando for obtido um valor igual ou maior que 16 mg/dL, diluir a amostra com NaCl 150 mmol/L (0,85%), realizar nova medição e multiplicar o resultado pelo fator de diluição.

Controle interno da qualidade. O laboratório deve manter um programa de controle da qualidade que defina claramente os regulamentos aplicáveis, objetivos, procedimentos, critérios para especificações da qualidade e limites de controle, ações corretivas e registro das atividades. Materiais de controle devem ser utilizados para

avaliar a imprecisão e/ou desvios da calibração. Sugere-se procurar atender como limites máximos de controle, especificações de coeficiente de variação, erro sistemático (bias) e erro total capazes de identificar a ocorrência de erros de importância médica.

Cálcio Ionizado (Cal)

Cal (mg/dL) =
$$\frac{6 \times Ca - \left[\frac{(0,19 \times P) + A}{3} \right]}{(0,19 \times P) + A + 6}$$

Ca = Cálcio sérico (mg/dL)

P = Proteína total (g/dL)

A = Albumina (g/dL)

Intervalos de referência¹⁰. Estes valores devem ser usados apenas como orientação. Recomenda-se que cada laboratório estabeleça seu próprio intervalo na população atendida.

Espécie	Concentração (mg/dL)
Canina	9,0-11,3
Felina	6,2-10,2
Bovina	9,7-12,4
Equina	11,2-13,6

Conversão: Unidades Convencionais (mg/dL) X 0,25 = Unidades SI (mmol/L).

Características do desempenho9

Exatidão. Em duas amostras com concentrações de cálcio iguais a 7,0 e 13,0 mg/dL foram adicionadas quantidades diferentes do analito obtendo-se recuperações entre 104 e 111%. O erro sistemático proporcional médio obtido em um valor de 11 mg/dL foi igual a 0,82 mg/dL ou 7,5%.

Especificidade. O método proposto foi comparado com produto de química seca, disponível comercialmente de uso exclusivamente veterinário. Foram utilizadas amostras de cães com valores situados entre 9,0 e 15,0 mg/dL. A comparação resultou na equação da regressão: y = 0,924x + 0,4045 e um coeficiente de correlação (r) igual a 0,9885. O erro sistemático total (constante e proporcional) verificado na concentração de 6,0 mg/dL foi igual a 0,04 mg/dL ou 0,62 %.

Repetitividade - Imprecisão intraensaio

	N	Média (mg/dL)	DP	CV (%)
Amostra 1	10	6,48	0,064	1,0
Amostra 2	10	9.88	0.072	0.72

Reprodutibilidade - Imprecisão total

	N	Média (mg/dL)	DP	CV (%)
Amostra 1	10	6,52	0,088	1,34
Amostra 2	10	9,80	0,096	0,98

Sensibilidade metodológica. Uma amostra proteica não contendo cálcio foi utilizada para calcular o limite de detecção do ensaio tendo sido encontrado um valor igual a 0.1 mg/dL, equivalente à média de

20 ensaios mais dois desvios padrão. Utilizando-se a absorbância do padrão como parâmetro, verificou-se que o limite de detecção fotométrica é de 0,06 mg/dL, correspondendo a uma absorbância igual a 0,0001.

Efeitos da diluição da matriz. Duas amostras com valores iguais a 15,7 e 17,0 mg/dL foram utilizadas para avaliar a resposta do sistema nas diluições da matriz com NaCl 150 mmol/L (0,85%). Usando fatores de diluição que variaram de 2 a 8 encontrou-se recuperações entre 91 e 99%.

Significado clínico¹¹. As alterações na concentração de cálcio no sangue podem resultar em problemas clínicos graves, incluindo a morte. Além disso, reconhecer e procurar a causa das anormalidades do cálcio frequentemente ajuda no diagnóstico da doença subjacente.

A medição total de cálcio inclui todo o cálcio, seja ligado ou não ligado. A fração ligada do cálcio total é aquela que está ligada à proteína (cerca de 40 a 45% do total de cálcio) e complexado com íons não proteicos, como fosfatos, citrato, lactato etc. (5 a 10% do total de cálcio).

Algumas das sequelas mais comuns da hipercalcemia acentuada incluem poliúria, constipação intestinal, insuficiência renal aguda e arritmias cardíacas.

A maioria dos sinais relacionados com a hipocalcemia ocorre devido à importância do cálcio na função muscular. Sinais podem incluir fasciculação muscular, tetania, convulsões, paresia, taquicardia, hipotensão e parada respiratória.

Anormalidades na concentração sanguínea de cálcio resultam de desequilibrio na regulação hormonal, absorção alterada do trato gastrintestinal, excreção patológica pelos rins ou distribuição alterada envolvendo o osso ou outros tecidos.

A hipercalcemia, se ignorada, pode levar a sérias consequências, como lesão renal aguda e insuficiência renal.

Aumentos transitórios e leves podem ocorrer pós-prandialmente. A desidratação concentra proteínas no sangue, o que pode resultar em leves elevacões na concentração de cálcio.

Observações

- A limpeza e secagem adequadas do material utilizado s\u00e3o fatores fundamentais para a estabilidade dos reagentes e obten\u00e7\u00e3o de resultados corretos.
- 2. O laboratório clínico tem como objetivo fornecer resultados exatos e precisos. A utilização de água de qualidade inadequada é uma causa potencial de erros analíticos. A água deionizada ou destilada utilizada no laboratório deve ter a qualidade adequada a cada aplicação. Assim, para preparar reagentes, usar nas medições e para uso no enxágue final da vidraria, deve ter resistividade ≥ 1 megaohm.cm ou condutividade ≤ 1 microsiemens/cm e concentração de silicatos <0,1 mg/L. Quando a coluna deionizadora está com sua capacidade saturada ocorre produção de água alcalina com liberação de vários íons, silicatos e substâncias com grande poder de oxidação ou redução que deterioram os reagentes em poucos dias ou mesmo horas, alterando os resultados de modo

imprevisível. Assim, é fundamental estabelecer um programa de controle da qualidade da água.

- 3. O uso de detergente iônico para a limpeza do material é uma fonte de contaminação com cálcio.
- 4. Para uma revisão das fontes fisiopatológicas e medicamentosas de interferência nos resultados e na metodologia sugere-se consultar Thrall. M A et al.. Hematologia e bioquímica clínica veterinária. Editora Roca, 2015.

Referências

- Bagisnki ES. Selected Methods of Clinical Chemistry 1982;9:125.
- Connerty HV, Briggs AR. Am J Clin Pathol 1966;45:290.
- Morin LG. Am J Clin Pathol 1974;61:114.
- 4. Pottgen P, Davis ER. Clin Chem 1976;22:1752.
- 5. Tonks DB. Quality Control in Clinical Laboratories, Warner Chilcott Laboratories, Diagnostic Reagents Division, Scarborough, Canada, 1972.
- 6. Westgard JO, Barry PL, Hunt MR, Groth T. Clin Chem 1981;27:493-
- 7. Burtis CA, Ashwood ER. Textbook of Clinical Chemistry, 2a. edição, Philadelphia: W.B. Saunders, 1986:2175-2211.
- 8. Soldin SJ, Brugnara C, Wong EC: Pediatric Reference Ranges, 5a. edição, Washington: AACC Press, 2005: 45-46.
- 9. Labtest: Dados de arquivo.
- 10. Kaneko, JJ; Harvey, John W.; Bruss, Michael L. (Ed.). Clinical biochemistry of domestic animals. Academic press, 2008.

11. Thrall, M A et al.. Hematologia e bioquímica clínica veterinária. Editora Roca, 2015.

Apresentação

	Produto	Referência	Conteúdo		
Cálcio Liquiform VET	1084-2/60	R 1	2 x 45 mL		
		R 2	2 x 15 mL		
	Elquilottit VE1		CAL	1 x 5 mL	

Para informações sobre outras apresentações comerciais consulte o site www.labtest.com.br.ou.entre.em.contato.com.o.SAC

Informações ao consumidor

[Termos e Condições de Garantia]

A Labtest Diagnóstica garante o desempenho deste produto dentro das especificações até a data de expiração indicada nos rótulos, desde que os cuidados de utilização e armazenamento indicados nos rótulos e nestas instruções sejam seguidos corretamente.

Labtest Diagnóstica S.A.

CNPJ: 16.516.296 / 0001 - 38

Av. Paulo Ferreira da Costa, 600 - Vista Alegre - CEP 33240-152 Serviço de Apoio ao Cliente | 0800 031 34 11 (Ligação Gratuita)

Lagoa Santa . Minas Gerais Brasil - www.labtest.com.br

Single use product

e-mail: sac@labtest.com.br

Edição: Fevereiro, 2022 Revisão: -Ref.: 071122(02)

Copyright by Labtest Diagnóstica S.A. Reprodução sob prévia autorização

Símbolos utilizados com produtos diagnósticos in vitro

Símbolos usados con productos diagnósticos in vitro . Symbols used with ivd devices

\sum	Conteúdo suficiente para $<$ n $>$ testes Contenido suficiente para $<$ n $>$ tests Contains sufficient for $<$ n $>$ tests	(Ii	Consultar instruções de uso Consultar instrucciones de uso Consult instructions for use	CONTROL	Controle Control Control	Q	Tóxico Tóxico Poison
	Data limite de utilização (aaaa-mm-dd ou mm/aaaa) Estable hasta (aaaa-mm-dd o mm/aaaa) Use by (yyyy-mm-dd or mm/yyyy)	REF	Número do catálogo Número de catálogo Catalog Number	CONTROL -	Controle negativo Control negativo Negative control	R	Reagente Reactivo Reagent
CAL	Material Calibrador Material Calibrador Calibrator Material	l i c	dições ou alterações significativas ambios o suplementos significativos ignificant additions or changes	CONTROL +	Controle positivo Control positivo Positive control		Fabricado por Elaborado por Manufactured by
CAL	Material Calibrador Material Calibrador Calibrator Material	IVD	Produto diagnóstico in vitro Dispositivo de diagnóstico in vitro In vitro diagnostic device	CONTROL	Controle Control Control	LOT	Número do lote Denominación de lote Batch code
1	Limite de temperatura (conservar a) Temperatura limite (conservar a) Temperature limitation (store at)	LYOPH	Liofilizado Liofilizado Lyophilized	绿	Risco biológico Riesgo biológico Biological risk	6	Período após abertura Período post-abertura Period after-opening
EC REP	Representante Autorizado na Comunidade Europeia Representante autorizado en la Comunidad Europea Authorized Representative in the European Community		Corrosivo Corrosive	C€	Marca CE Marcado CE CE Mark	®	Uso veterinário Uso veterinario Veterinary use
	Instalar até Instalar hasta	М	Fabricado em Elaborado en		o de uso único to de un solo uso		2 (22222

Ref.: 280322